
FRESHWATER INFLOW AND SEDIMENT AND NUTRIENT LOADING FROM TRINITY RIVER TO GALVESTON BAY

PROJECT TASKS

Main task: Analysis of streamflow and nutrient and sediment concentrations in the lower Trinity River watershed

- 1. Operation and maintenance of index-velocity gage at Trinity River at Wallisville, Tex. and periodic water-quality sample collection.
- 2. Streamflow measurements and water-quality sample collection at Old River and Wallisville site during high flows.

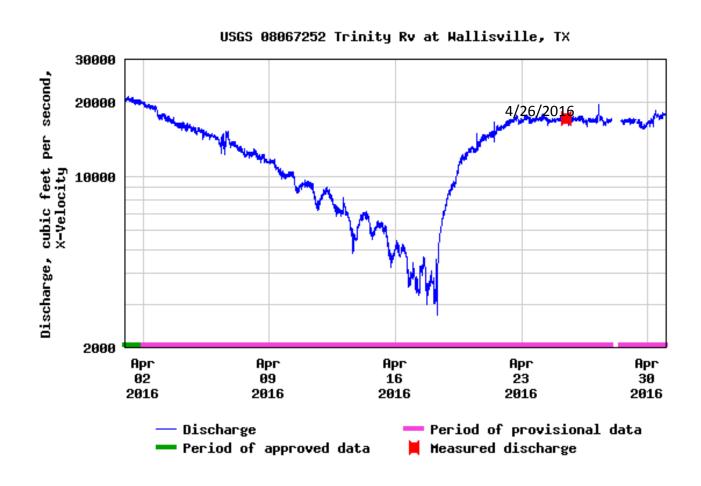
- Gain a better understanding of how freshwater inflows, sediment, and nutrients enter Galveston Bay over a range of hydrologic conditions from the Trinity River.
- 2. Find a better way to predict freshwater inflow to Galveston Bay to improve hydrodynamic and water quality model predictions.
- 3. Improve our understanding of the role wetlands are playing in regulating flow and water quality of inflows.

Streamflow (in cubic feet per second) measured at:

Date	Trinity River at Liberty	Trinity River at Wallisville	Old River	Wallisville + Old River	Difference in streamflow
6/10/2015	60,000	21,600	44,300	65,900	5,900
3/17/2016	52,000	22,700	34,800	57,500	5,510
4/26/2016	32,000	17,200	7,360	24,600	-7,440
6/3/2016	81,000	22,300	62,700	85,000	4,950
10/18/2016	NA	-264	Tidal	NA	NA
12/7/2016	16,400	12,600	Tidal	NA	-3,800
4/13/2017	16,900	13,200	Tidal	NA	-3,700

GOAL: Develop a rating or lookup table to predict the flow in Old River based on streamflow measured upstream and at Wallisville.

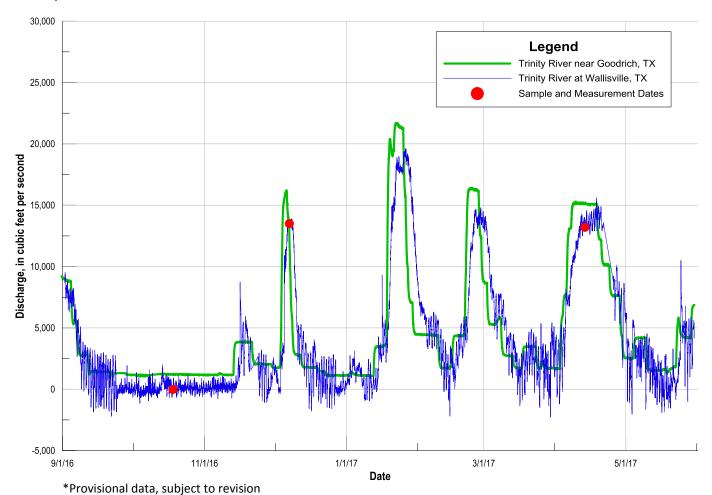
Issues with developing a rating or lookup table to predict streamflow


- 1. Conditions previous to an event
 - Saturation in wetlands may affect storage and streamflow
 - Measurements at similar streamflow, but different conditions would be ideal
- 2. A wider range of flows needs to be measured
 - Needed flows are between 20 and 50k cfs

Streamflow (in cubic feet per second) measured at:

Date	Trinity River at Liberty	Trinity River at Wallisville	Old River	Wallisville + Old River	Difference in streamflow
6/10/2015	60,000	21,600	44,300	65,900	5,900
3/17/2016	52,000	22,700	34,800	57,500	5,510
4/26/2016	32,000	17,200	7,360	24,600	-7,440
6/3/2016	81,000	22,300	62,700	85,000	4,950
10/18/2016	NA	-264	Tidal	NA	NA
12/7/2016	16,400	12,600	Tidal	NA	-3,800
4/13/2017	16,900	13,200	Tidal	NA	-3,700

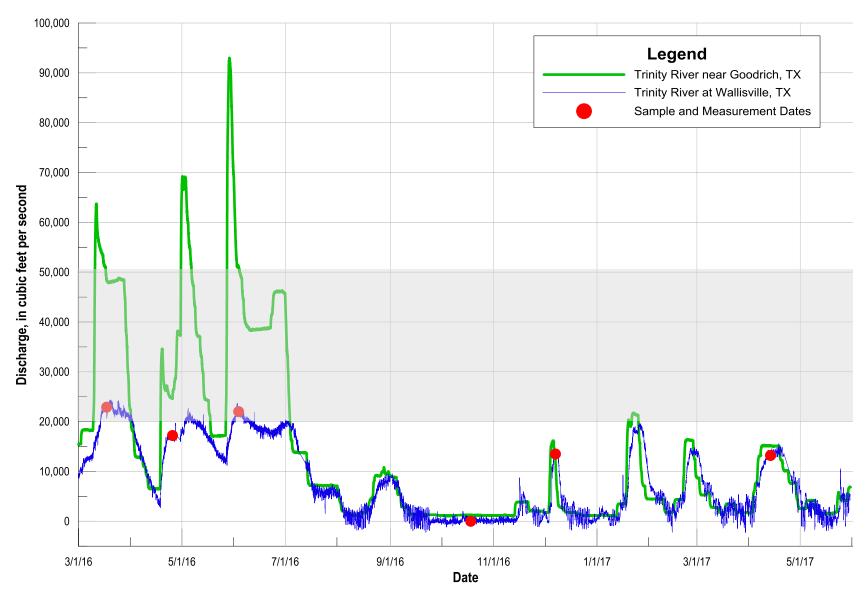
Event in Apr 2016: "balance" was not achieved


Streamflow (in cubic feet per second) measured at:

Date	Trinity River at Liberty	Trinity River at Wallisville	Old River	Wallisville + Old River	Difference in streamflow
6/10/2015	60,000	21,600	44,300	65,900	5,900
3/17/2016	52,000	22,700	34,800	57,500	5,510
4/26/2016	32,000	17,200	7,360	24,600	-7,440
6/3/2016	81,000	22,300	62,700	85,000	4,950
10/18/2016	NA	-264	Tidal	NA	NA
12/7/2016	16,400	12,600	Tidal	NA	-3,800
<mark>4/13/2017</mark>	16,900	13,200	Tidal	NA	-3,700

Issues with developing a rating or lookup table to predict flows

- 1. Conditions previous to an event
 - Example:

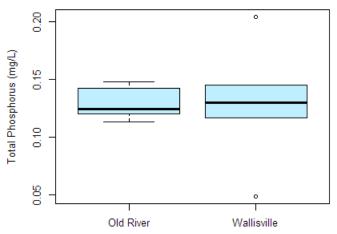


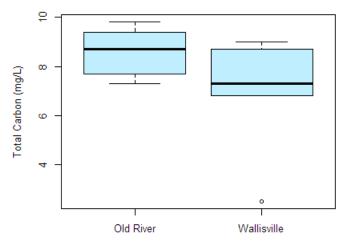
Issues with developing a rating or lookup table to predict flows

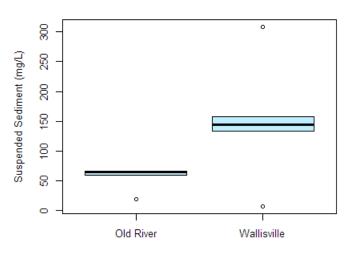
- 1. Conditions previous to an event
 - Saturation in wetlands may affect storage and streamflow
- 2. A wider range of flows needs to be measured:
 - Needed flows are between 20k and 50k ft³/s

How can water quality be affected?

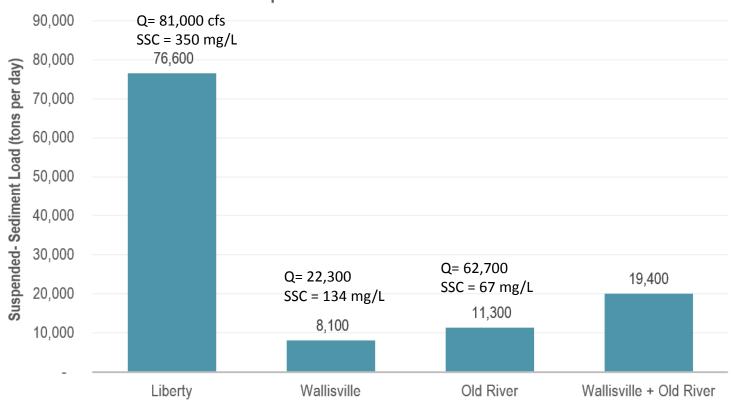
As water flows through wetlands the concentration of water quality constituents may change:


- Decrease in concentrations: Settling of suspended particles, denitrification, vegetation uptake, and retention
- Increase in concentrations: Input from wetland vegetation and biota


These processes may ultimately affect nutrient and sediment loading to Galveston Bay.

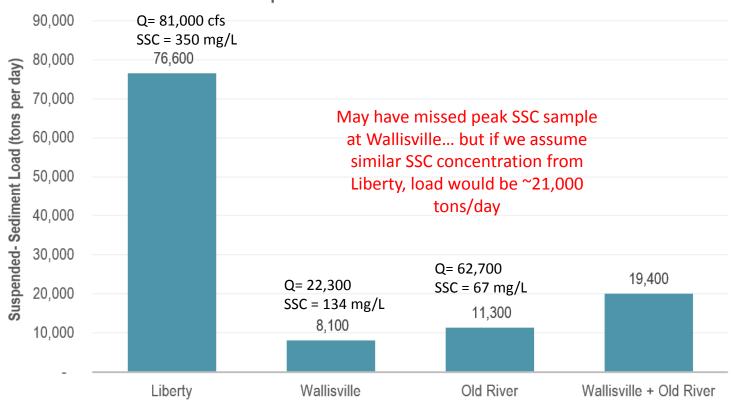


SELECTED WATER-QUALITY DATA



SUSPENDED-SEDIMENT LOADING

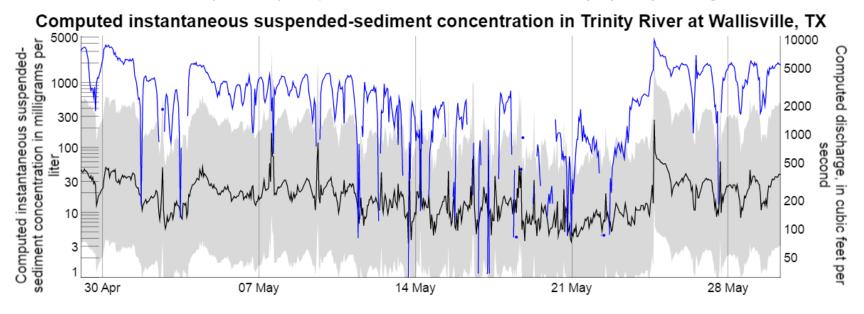
In this example, if upstream station is used to compute loading, sediment load is overestimated by almost 300%



SUSPENDED-SEDIMENT LOADING

In this example, if upstream station is used to compute loading, sediment load is overestimated by almost 300%

ACOUSTIC SURROGATE FOR SUSPENDED-SEDIMENT



The data used to produce this plot are provisional and have not been reviewed or edited. They may be subject to change.

Data pulled 05-30-17 11:09.

The chart is interactive: you can mouse over to highlight individual values. You can click and drag to zoom. Double-clicking will zoom you back out. Shift-drag will pan.

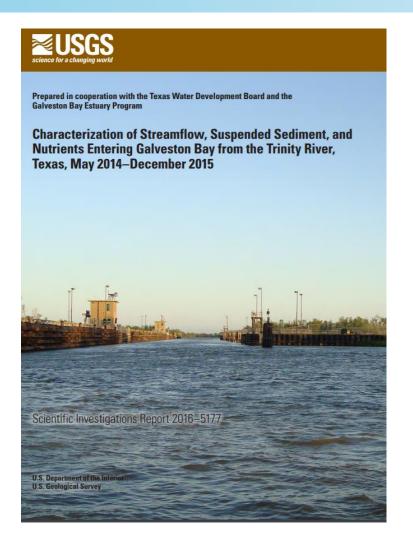
EXPLANATION

Discharge

Measured or computed water-quality constituent

90-percent prediction interval for computed value

Value obtained from discrete sampling and analysis


Load calculated using laboratory analysis and discharge

:::: Water-quality criteria

https://nrtwq.usgs.gov/

USGS REPORT

Characterization of streamflow, suspended sediment, and nutrients entering Galveston Bay from the Trinity River, Texas, May 2014–December 2015

Scientific Investigations Report 2016-5177

https://pubs.er.usgs.gov/publication/sir20165177

ISSUES

- Rainfall: Not enough high flow events to meet project objectives throughout the duration of project
 - No cost extension was requested and new project end date is 8/31/2018
- Scouring around Wallisville gage house Gage was moved and meter remained in place

WHAT'S NEXT?

- Continue O&M of index-velocity streamgage and suspendedsediment rating at Wallisville site.
- Collect additional water-quality samples and obtain discharge measurements:
 - at needed flows (20-50k ft³/s) and
 - during events with varying antecedent conditions.
- Evaluate methods to predict flow in lower reaches of the Trinity River.

U.S. Geological Survey Texas Water Science Center Gulf Coast Program Office

Zulimar Lucena <u>zlucena@usgs.gov</u>

Michael T. Lee mtlee@usgs.gov